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Abstract. The Global Modeling Initiative (GMI) science team is developing a

three dimensional chemistry and transport model (CTM) to be used in assessment of

the atmospheric effects of aviation. Requirements are that this model be documented,

be validated against observations, use a realistic atmospheric circulation, and contain

numerical transport and photochemical modules representing atmospheric processes.

The model must also retain computational efficiency to be tractable to use for multiple

scenarios and sensitivity studies. To meet these requirements, a facility model concept

was developed in which the different components of the CTM are evaluated separately.

The first use of the GMI model will be to evaluate the impact of the exhaust of

supersonic aircraft on the stratosphere. The assessment calculations will depend

strongly on the wind and temperature fields used by the CTM. Three meteorological

data sets for the stratosphere are available to GMI: the National Center for Atmospheric

Research Community Climate Model (CCM2), the Goddard Earth Observing System

Data Assimilation System (GEOS DAS), and the Goddard Institute for Space Studies

general circulation model (GISS).

Objective criteria were established by the GMI team to identify the data set which

provides the best representation of the stratosphere. Simulations of gases with simple

chemical control were chosen to test various aspects of model transport. The three

meteorological data sets were evaluated and graded based on their ability to simulate

these aspects of stratospheric measurements. This paper describes the criteria used in

grading the meteorological fieldsl The meteorological data set which has the highest

score and therefore was selected for GMI is CCM2. This type of objective model

evaluation establishes a physical basis for interpretation of differences between models

and observations. Further, the method provides a quantitative basis for defining model

errors, for discriminating between different models, and for ready re-evaluation of

improved models. These in turn will lead to a higher level of confidence in assessment

calculations.
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1. Introduction

The Atmospheric Effects of Stratospheric Aircraft (AESA) component of the

National Aeronautics and Space Administration (NASA) High Speed Research Program

(HSRP) seeks to assess the impact of a fleet of high speed civil transport (HSCT)

aircraft on the lower stratosphere. There are several components to such an assessment.

Measurements in the field and laboratory, characterization of the exhaust products, and

development of realistic scenarios for the distribution of emissions all play important

roles. Ultimately, the use of models to calculate the fate of aircraft exhaust, the buildup

of such pollution in the lower stratosphere, and the model response of ozone to the

change in lower stratospheric composition is a key element of the assessment, as models

are the primary tools through which the impact on the ozone layer is quantified.

Assessment calculations for stratospheric aircraft have centered on results obtained

with two dimensional (latitude altitude) models [Prather et al., 1992; Stolarski et al.,

1995]. However, as has been pointed out from the start of AESA [Douglass et al., 1991],

there are aspects to this assessment which are more appropriately modeled in three

dimensions. The aircraft are proposed to fly mainly in the northern hemisphere and

always over the oceans with a high concentration of flight paths in identifiable oceanic

corridors. Thus the pollutant source is zonally asymmetric and concentrated. The

meteorology of the northern hemisphere stratosphere is influenced by the land ocean

pattern, thus the transport of polluted air from the stratosphere to the troposphere

is also asymmetric. There have been efforts to evaluate the importance of these

asymmetries to the assessment calculation, and to quantify expected differences from

a two dimensional calculation [Douglass et al., 1993; Rasch et al., 1994; Weaver et

al., 1995; Weaver et al., 1996]. Although studies so far suggest fairly small impacts

to the build up of exhaust for three dimensional (3D) versus two dimensional (2D)

models, uncertainties remained. There were differences in the pollutant build-up and

the ozone response calculated by the various 2D models, which focussed attention on
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uncertainty in the 2D model transport. The National ResearchCouncil Panelon the

AESA reviewedthe NASA Interim Assessment[Albritton et al., 1993], recognized this

uncertainty, and recommended greater use of three-dimensional models, at least to

evaluate the uncertainties associated with transport [Graedel et al., 1994].

There are fundamental advantages to a three dimensional calculation using state of

the art representations of stratospheric chemical and transport processes, all of which

could serve to reduce uncertainty in the assessment calculation, a primary goal of the

AESA. Some of the uncertainties in the 2D model assessments arise because there are

observed aspects of stratospheric transport that are not represented explicitly in 2D

models. These include (but are not limited to) the wave mean flow interaction, the

seasonal variation in the tropopause height, cross tropopause transport, and the seasonal

evolution of the polar vortices. The 2D models adopt diffusion coefficients to simulate

the 3D mixing of trace gases by planetary scale waves and to define the tropopause.

While there is a strong theoretical basis for collapsing stratospheric transport to two

dimensions, formulation of a 2D model requires simplifying assumptions, and the

formulations in current use are not unique, as evidenced by the range of results for model

transport tests as reported by the Second Stratospheric Models and Measurements

Workshop [Ko and Jackman, 1999].

The 3D models address these uncertainties by improving the physical basis for

representing these processes. In some cases, comparisons of models with observations

reflect these improvements. For example, the amplitude of the annual cycle in total

ozone at northern middle latitudes is generally closer to the observed amplitude

in 3D models than in 2D models [Rasch et al., 1995; Douglass et al., 1996]. The

improved agreement is at least partially a result of a more physical representation of

the tropopause and the concomitant transport in the lowermost stratosphere. It is

important to remember that 2D models have long been used to calculate constituent

evolution, and comparison of calculated fields with zonal means of global observations



hasbeena principle meansof evaluatingthe 2D models [e.g.,Prather and Remsberg,

1993]. As noted above, model transport has a strong theoretical basis, but retains a

strong phenomenological component due to underlying simplifying assumptions and

parameterizations. The 3D models do not have this heritage for constituent modeling,

and it is not likely that they will produce zonal mean results that compare better

with zonal mean observations than 2D models. However, improvement in the physical

basis of the models sets the stage for physically based improvements in the 3D model,

often through interpretation of the differences between model fields and constituent

observations.

The major disadvantage to utilizing 3D models for assessment is their large

computational requirement. Since the motivation for using the 3D model rests on the

improved physical basis of the model, the horizontal and vertical resolution must be

adequate to resolve important transport processes. The transport and photochemical

time steps must both be substantially smaller than the time steps often used in 2D

models. Model evaluation also becomes a larger task, requiring both computational

and human resources. It is impractical that 3D assessments follow the path of 2D

assessments, in which independent calculations are produced by several research groups.

To gain the benefits of using the 3D assessment and maintain involvement of several

research groups, the Global Modeling Initiative (GMI) science team was formed.

The goal of this group is to produce a well tested 3D chemistry and transport

model that is useful for assessment calculations. A modular design allows various

numerical transport schemes, photochemical schemes, and sets of meteorological data

(winds and temperatures) to be tested within a common framework. The choices of

which scheme to use have been made considering both performance and computational

requirements. The choices for the numerical scheme for photochemistry [Connell et al.,

1998] and transport [Rotman et al., 1998], and the initial results from an assessment

calculation [Kinnison et al., 1998] are presented in companion papers in this issue. This
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paper centerson establishingcriteria to choosethe meteorologicalinput fields for the

assessmentmodel.

This exerciseof evaluating different meteorologicalfields for use in the model

sets an important precedentfor modelingwork. The modelsare evaluatedstrictly by

comparisonswith observations,and are scoredquantitatively relative to eachother

and to a standard definedby the observations.The approach givenhere providesa

quantitative, reproducible method for evaluating a meteorologicaldata set. Because

the testsare themselvesphysically based,this providesgroundworkfor identification of

neededmodel improvements.Application of the sametests to improvedmodelswill give

a quantitative measureof the improvements. In the future the tests may be applied to

other meteorologicaldata sets;the tests themselvesmay be refined,expanded,replaced,

or augmented.However,the methodologyshould stand, and servesas a challengeto

move from subjective to quantitative model evaluation. An obviousextensionto this

application will be evaluation of the tropospheric and lower stratospheric transport

produced by various meteorologicaldata sets as part of the Atmospheric Effects of

Aircraft Project (AEAP) SubsonicAssessment(SASS),also an objective of GMI.

The three candidate meteorologicaldata sets are describedin section 2. To

distinguish among them, aspects of transport thought to be important to the

stratospheric assessment were identified, and tracer simulations to examine these

transport issues were designed. These simulations are described in section 3. The tests

themselves and the model performance on the tests are presented in section 4. Some

discussion and conclusions, including the choice of the meteorological data to be used in

the assessment, are given in section 5.
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2. Meteorological Input Fields

2a GMI-CCM2

The GMI-CCM2 meteorological fields (hereafter referred to as CCM2) come from a

middle atmosphere version of the community climate model version 2 (MACCM2). The

standard configuration of the community climate model [Hack et al., 1994] is modified

to produce a simulation appropriate for the stratosphere by reducing the horizontal

resolution and increasing the vertical resolution. The middle atmospheric model is run

at a horizontal resolution of about 2.8 ° latitude by 5.6 ° longitude, with 44 levels in the

vertical extending from the surface to about 75 km. Near the tropopause the spacing

between levels is about 1 km; the maximum vertical spacing is about 2.5 km. This model

configuration provides a tropospheric simulation that is similar to the standard version

of the model and a realistic stratospheric simulation. The meteorological fields compare

well with observations of winds and temperatures in the northern hemisphere [Boville,

1995]. However, the southern polar winter climatology is 30-40 degrees too cold, and

the polar night jet is at least 50 meters/second too strong. These meteorological fields

were used in an off-line full chemistry simulation, and comparisons of the resulting

constituent fields with observations are discussed by Rasch et al. [1995].

The standard CCM2 gravity wave drag parameterization, which strongly influences

the model middle atmosphere circulation, assumed a zero phase speed gravity wave

source originating solely from flow over subgridscale orography [Boville, 1995]. This

source of gravity waves was augmented to provide for a more general source of gravity

waves with non-zero phase speed arising from a variety of sources (shear instabilities,

frontal propagation and convection) by adding separate zonally uniform sources for

northern hemisphere, southern hemisphere and equatorial gravity waves. As a result of

this change, the errors associated with an excessively strong jet and cold temperatures

in the southern hemisphere winter night are dramatically reduced. The resulting



meteorologicalfields have beenusedfor studies of the dynamics and photochemistry

of the southern hemisphere[e.g. Brasseur et al., 1997]. However, in the northern

hemisphere winter, the revised version compares less well with meteorological data

in that the temperature is somewhat too warm, stratospheric sudden warmings are

produced too frequently, and the final warming occurs too early in the model spring.

Datasets from both configurations of the model were provided to the AESA effort.

The meteorological winds from the revised version of MACCM2 were judged to provide

a better representation of the stratosphere than the first version, in spite of the known

biases between model and observations for the northern hemisphere winter. The tests

described below utilize the dataset with the revised gravity wave parameterization.

2b GMI-GISS

The Goddard Institute for Space Studies (GISS)meteorological fields used in GMI

come fi;om a middle atmosphere version of the GISS general circulation/climate model

using model 2' physics. The standard GISS climate model is configured on 4 ° latitude

by 5 ° longitude grid with 9 layers [Hansen et al., 1983; Rind and Lerner, 1996]. The

middle atmosphere model used here has higher vertical resolution (31 layers), an upper

boundary at 80 km, and a gravity wave drag parameterization that greatly improves the

simulation of stratospheric temperatures and the strength of the jets [Rind et al., 1998

and references therein). The vertical grid uses sigma coordinates from the surface to 150

hPa and fixed pressure levels above to a model lid of 0.002 hPa. The layer thickness is

about 2 km near 150 hPa and increases to about 4 km throughout the stratosphere. The

GMI-GISS (hereafter referred to as GISS) chemical transport simulations use the 6 hour

averaged wind and temperature fields recorded from a single year of this model. The

top 4 layers (above 72 km) are combined into a single layer. Analysis of the dynamical

properties of these wind fields is given by Rind et al. [1998] and references therein, and

the use of these wind fields in a CTM is described by Hannegan et al. [1998].



2c GMI-GEOS DAS

The GEOS DAS (Goddard Earth Observing System Data Assimilation System)

winds are produced by a stratospheric version of the GEOS-1 system described by

Schubert et al. [1993]. The stratospheric version has the top raised to _ 0.1 hPa with a

total of 46 vertical levels. The horizontal resolution is 2° latitude by 2.5 ° longitude. The

vertical winds are mapped to a 29 level grid using a scheme which minimizes errors due

to noise in the assimilated wind field. This technique integrates horizontal divergence

over a column and maps the horizontal winds onto new vertical levels, while conserving

the mass flux [S. J. Lin, personal communication]. Near the tropopause the vertical

spacing is about 1 km; the spacing is about 2.5 km through the middle and upper

stratosphere. The output fields are available four times per day.

Unlike the other data sets used in this study, the GMI-GEOS DAS winds and

temperatures (hereafter referred to as GEOS DAS) are based on observations; the

period for the assimilation is October 1995 through September 1996. The observations

include rawinsonde and satellite temperature retrievals as well as surface observations

and cloud track winds. A short GCM forecast (3 hr) provides the first guess for an

optimal interpolation data analysis procedure. The period used here is part of a longer

assimilation run begun in May 1995 for the Stratospheric Tracers of Atmospheric

Transport aircraft mission.

Some aspects of stratospheric data assimilation are described by Coy and Swinbank

[1997] and Coy et al. [1994]. The global coverage from the satellite observations

produces a good representation of the temperature and mass field. The mid and high

latitude winds associated with the vorticity field are well represented through the use

of the geostrophic approximation. In the lower stratosphere, additional information

is provided by the middle latitude rawinsonde stations. At low latitudes the winds

are less certain as there are not many rawinsondes which report tropical stratospheric

data and the uniformity of the tropical mass field makes the geostrophic approximation
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much less useful. The horizontal divergence of the wind field is not directly observed

in the stratosphere. In the GEOS DAS products it is determined by the interaction

of the general circulation model with the inserted observations. Coy and Swinbank

[1997] showed that the GEOS DAS zonal mean divergence field produced a qualitatively

correct residual mean meridional circulation; the tests described here evaluate the

residual mean meridional circulation quantitatively.

3. Constituent Simulations

The primary goal of testing these wind fields is to evaluate their ability to produce

realistic transport in the lower stratosphere. To this end, we performed several

simulations of long-lived tracers, and tested the resulting fields against observations. All

meteorological fields were used on a 4° latitude by 5 ° longitude horizontal grid; for some,

this required interpolation. The number of vertical levels was maintained, unique to

each model, as described in the previous section. Numerical transport was accomplished

using a scheme developed by Lin and Rood [1996]. Only advective transport was

considered. This is acceptable for the stratosphere, but for tropospheric simulations it

will be necessary to include vertical transport by convection.

Nitrous oxide serves as a tracer of stratospheric transport. Its only sources are in

the troposphere, and it is long lived in much of the stratosphere. Loss is prescribed from

a photochemical model that used observed zonal mean climatologies for temperature and

ozone. The loss frequency for N20 (photolysis and reaction with O(1D)) is tabulated

as a zonal mean function of latitude, pressure, and month [Hall and Prather, 1995;

Avallone and Prather, 1997]. Because N20 is also the primary stratospheric source of

reactive nitrogen NOy, and because the observed correlation between NOy and N20

in the lower stratosphere is well defined and linear, the model NOy behavior can be

inferred from the model N20.

CO2 serves as a tracer of upper tropospheric/lower stratospheric transport. Unlike
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N20, it has no sinks in the stratosphere,but a small sourcefrom the oxidation of CH4.

Air enters the stratosphereat the tropical tropopause,wherethe CO2mixing ratio has

both an annual cycle (3-4ppmv) and an annual trend (N 1.5ppmv). Thus the phaseof

the CQ annual cycle in variousregionsof the lowerstratospherecontains information

about transport and mixing. The CO_simulations wereforcedat all model levelsbelow

700 hPa with monthly zonal mean CO_ mixing ratios derived from the NOAA Climate

Monitoring and Diagnostic Laboratory (CMDL) global network of surface stations

(Pieter Tans, personal communication). The CMDL data from remote stations were

degraded to monthly values at 10 ° latitude bands. This 16-year record of CQ was used

to force the CTM simulations by resetting the lower troposphere zonally every time

step with the appropriate monthly value. This approach has been shown to produce

reasonable simulations of CO_ in the upper troposphere and stratosphere [Hall and

Prather, 1993]. The small source of CO2 from the oxidation of CH4 could be calculated

by simulating the stratospheric CH4 distribution, but does not affect the propagation of

the tropospheric signal in CO_ into the lower stratosphere and is neglected here.

Including a convective parameterization in the tropospheric constituent transport

was found to violate the separation of the upper troposphere and lowermost stratosphere

for CCM2 and GEOS DAS (see test 5 below). Because stratospheric transport is of

primary importance to the AESA assessment, the simulations considered here are run

without convection; lack of convection is compensated for by applying the model lower

boundary conditions up to the middle tropsophere. Because subsonic aircraft fly near

the tropopause in the upper troposphere and lower stratosphere, it will be important

that the GMI model used in SASS include a realistic and validated parameterization of

convective transport.
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4. The Tests

Figure 1 is a schematicrepresentationof the stratospheredescribingaspectsof

stratospheric transport which are important to model performance. The broad arrows

on the diagramdenotethe BrewerDobsoncirculation, which producesupward transport

in the tropics and seasonallydependentdownwardtransport in the middle and high

latitudes. The thick solid line, with breaksin the subtropics,representsthe tropopause,

i.e., the level in the atmosphereat which the temperature, which generally decreases

with altitude in the troposphere,beginsto increasewith altitude as a result of heating

from absorption of ultraviolet light by O3. The tropopause is also marked by distinct

changesin the mixing ratio of various constituents, including H20, O3,and NOy. A

thick solid line indicatesthe 380Kpotential temperaturesurface,which is approximately

the lowest potential temperature surfacewhich is fully in the stratosphere. Mixing

can take placeon constant potential temperature surfaces,but it is also inhibited by

dynamical transport barriers. Shadedregionsrepresentthe subtropical boundariesand

the boundariesbetweenthe middle latitudes and the winter polar vortex. As at the

tropopause,constituent observationsshow distinct, seasonallydependent,horizontal

gradients in theseareas,suggestingseparationof the air masses.Betweentheseshaded

regions,there is mixing on constantpotential temperature surfaces.

The numeralson the figure indicate the part of the stratosphereto which a

particular test is most relevant. The largest pollutant mixing ratios are expectedat the

flight level of the aircraft, .markedby an airplane on the figure. Test 1 considersthe

temperature wherethe largest perturbation is expected. Test 2 has two parts which

examine the balancebetween the residual circulation and horizontal mixing in the

middle to upper stratosphere(Test2a) and in the lower stratosphere(Test 2b). Test 3

concernsthe separationbetweenthe tropics and middle latitudes. Test 4 focuseson the

vertical transport in the tropics and the effectsof entrainment of air from the middle

latitudes. Test 5 looks at transport near the tropopause. Test 6 concernsexchange
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between the middle latitudes and the tropics.

These tests are comprehensive but not exhaustive. Furthermore, in this first

incarnation of the GMI model, we have chosen to include one "typical" year for each of

the meteorological data sets. There is no effort to assess the role of the quasi-biennial

oscillation or other phenomena contributing to longer time scale variability. The

accuracy of the model response to supersonic aviation (i.e., the HSCT assessment) is

not likely to be equally sensitive to the model ability to match observations for each of

these tests. However, the model performance on each of these tests provides an overall

evaluation of the model transport, with the possibility that differences between model

and observations can be understood in terms of physical processes. The tests and model

performance are discussed in detail below.

Test 1 Temperature

The projected supersonic aircraft are expected to fly near 50 hPa, mostly at

northern middle latitudes [Prather et al., 1992]. Although the temperature per se does

not affect the dispersion and buildup of aircraft exhaust, the processes affecting the

impact of aircraft exhaust are temperature dependent, through gas phase photochemical

reactions and through heterogeneous reactions on the surfaces of aerosols and polar

stratospheric clouds (PSCs). In addition to the temperature dependence of some of the

reactions which take place on aerosols and PSC surfaces (e.g., C1ONO2 ÷ H20), the

formation threshold for PSCs is temperature dependent, and the threshold itself will

increase if the aviation products enhance the natural background of H20 and HNO3.

This test focuses on the model climate at 50 hPa for two latitude bands, 40°N-50°N and

60°N-70°N. An annual climatology is compiled using 18 years of data from the National

Center for Environmental Prediction (NCEP), formerly the National Meteorological

Center (NMC). The monthly mean for the NCEP temperature includes all data within

the specified latitude band for all 18 years; the monthly mean for the models includes
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1 year. The standard deviation for each month is calculated using daily temperature

fields and their difference from this monthly mean. The annual cycles of the monthly

mean and standard deviation of NCEP temperatures for the two latitude bands are

compared with the annual cycle and standard deviation for temperatures from CCM2,

GEOS DAS, and GISS in Figure 2. At 40°N-50°N, GEOS DAS temperatures fall within

the standard deviation of the NCEP climatology, as expected since the same data used

to produce GEOS DAS are one year of the NCEP data set. CCM2 temperatures are

within the standard deviation of NCEP most of the year, falling outside only during

late summer and fall. The GISS temperatures are warmer than the NCEP climatology

for most of the year. The standard deviations of the model fields generally follow the

standard deviation of NCEP, except during winter when CCM2 and GISS show less

variance than observed and GEOS DAS shows slightly more for 1995 compared with the

18 year climatology.

At 60°N-70°N, both CCM2 and GISS mean temperatures are 3 to 4 degrees warmer

than the NCEP climatology for most of the year. This is a known deficiency of the

version of CCM2 used for this test, as discussed in section 2a. Both CCM2 and GISS

exhibit much less winter variance than NCEP (or GEOS DAS).

The differences seen in this figure are scored quantitatively using the following

standard:

grade0=l- [ 0,i - 0,i [
2aNCEP (1)

i-- 1 0,i

where T is the monthly mean temperature, a is the standard deviation from the

monthly mean, 0 refers to the latitude band and the subscript i refers to each of the 12

months. Thus the grade is high when the model difference from NCEP, weighted by the

standard deviation of the NCEP temperatures, is small. Although it may be important

for strongly temperature dependent processes such as PSC formation that a M°D_'L is

smaller than aNCEP, such processes cannot be realistic if there is a large difference from

the mean temperature, and we have chosen not to score the comparison of the observed
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and modeledstandard deviations. The scoresfor the three models are summarizedin

Table 1.

Test 2 Residual Circulation and Mixing

The strong vertical stability in the stratosphere constrains the vertical velocities

to be a small fraction of the horizontal velocities. Thus, while the horizontal winds

in the lower stratosphere are on the order of 10 ms -1 the average vertical velocities

are measured as fractions of a millimeter per second (,,_ 0.001 ms-_)[Mote et al.,

1998]. Since most trace gases in the stratosphere are vertically stratified, the vertical

motions, though small, create horizontal gradients between regions of mean upward

and downward motion. Concurrent horizontal motions tend to reduce these average

horizontal gradients by mixing. Although at any given moment, large gradients may

occur locally during mixing and wave breaking, for this evaluation we are concerned with

monthly to seasonal time averages over 10 ° or greater latitudinal bands. For multi-year

assessments the driving winds must realistically capture both the horizontal mixing and

the slower vertical motions. In other words, since the CTM calculates vertical motion

consistent with the horizontal wind divergence, the driving winds must capture both

the divergence of the horizontal winds (for the slow upward motion) and the vorticity of

the horizontal winds (for the horizontal mixing).

The above can be made more explicit by considering the residual mean meridional

circulation and the Eliassen-Palm (EP) flux divergence associated with a given wind

field [see Andrews et al., 1987, p. 128]. An accurate representation of the EP flux

divergence requires that the waves, seen mainly in the vorticity field, have realistic

amplitudes and phase structures. The model waves must also dissipate by wave breaking

or radiative damping at appropriate latitudes and heights. An accurate representation

of the residual mean meridional circulation requires that the model or data assimilation

system which generates the winds have an accurate radiative transfer scheme and a
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plausible sub-grid scale wave drag, in addition to an accurate representation of the EP

flux divergence from the resolved waves. Realistic wave forcing is necessary for the

downward control principle to produce a useful residual mean meridional circulation

[McIntyre, 1992].

One way to judge the transport characteristics associated with a wind field is to

study the long lived tracer distribution produced by the wind field through advection

and mixing. Randel et al. [1994], by evaluating the zonal mean tracer budget, show

how the long lived tracers depend on the residual mean circulation and eddy transport.

These tests are designed to see how well the circulations associated with different driving

wind fields can simulate the characteristics of an observed long lived tracer.

Test 2(a) Mid to Upper Stratosphere

Nitrous oxide N20 is emitted in the lower troposphere and destroyed in the

stratosphere by photolysis and by reaction with excited atomic oxygen O(1D). The

latter reaction is by far the smaller process through which N20 is destroyed (about

10%), but is the dominant source of reactive nitrogen species in the stratosphere.

The local chemical lifetime of N_O decreases from hundreds of years at 100 hPa to

several weeks in the upper stratosphere; the height and latitude dependence of the loss

combined with the residual circulation and horizontal mixing produce the distribution

seen in Figure 3. The NeO pictured here was observed by the Cryogenic Limb Array

Etalon Spectrometer (CLAES) on the Upper Atmosphere Research Satellite (UARS)

[Roche et al.,1993; Roche et al., 1996]. CLAES viewed from 34 degrees latitude in one

hemisphere to 80 degrees latitude in the other hemisphere for periods of about one

month during which the orbit precessed. The spacecraft was then yawed to keep the

cold side away from the sun, and CLAES viewed the opposite hemisphere. The data

shown in Figure 3 were taken from several days before and after yaw maneuvers, and

thus provide near global coverage. Figure 3a shows data taken between Sept. 18 and



17

Sept. 24, 1992and Figure 3b showsdata taken betweenJan. 6 and Jan. 13, 1993.Data

areaveragedin 10degreelatitude bandsfrom 80°Sto 80°N. Theseobservationsreveal

seasonaldifferencesin N20. For example,in the northern hemisphere,the N20 contours

at middle latitudes are flatter during Januarythan in September,and the high latitude

contours showevidenceof winter descent.

The Septemberand January zonal mean distributions for the three modelsare

comparedwith CLAES observationsin successivepanelsof Figure 4. Inspection of

the figuresshowsthat all three modelsproducedistributions that have many features

in common with the CLAES observations.The maximum N20 at any pressureis

found in the tropics, and the N20 decreaseswith altitude at all latitudes. The winter

contours are flatter at middle latitudes in January than during September;their flat

character indicatesefficient planetary wavemixing. The upwelling region variesamong

the models, and is narrowest for CCM2. There are alsoobvious differencesamong

the modelsrelative to eachother and relative to CLAES data. These comparisons

are quantified by requiring agreementof the model fields with severalfeatures in the

CLAES data. The annual mean N_O is calculated averagingall CLAES observations

that fall within specifiedlatitude and altitude (pressure)ranges.The vertical rangesare

about 5 km, centeredon 30, 10and 2 hPa. Horizontal latitude bands are 10degrees

wide and centeredon 45°N, 45°S,and the equator. For the annual cycle comparisons,

all data within a month at the appropriate pressureand latitude band are averaged.

Linear interpolation is usedto fill observationalgaps;at most one month is missing.

The model value must be within 20% of the CLAES valuefor a scoreof 1, and

within 40% of CLAES for a scoreof 0.5. The following comparisonsare made:

1. Annual mean at 3 levelsfor eachlatitude band (9 points of comparison)

2. The vertical gradients for eachlatitude band (6 points of comparison)

3. The horizontal gradients for eachpressure(6 points of comparison)

4. The annualcycle in the tropics (36points of comparison)
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5. The annual cycle in the northern middle latitudes (36points of comparison)

6. The annual cycle in the southernmiddle latitudes (36points of comparison)

The scoreson eachcomponentof the test areweightedto have a maximum of 1,

and the overall scoreon this test is the averageof the abovesix components.Results

aregiven in Table 2.

A sense of these comparisons is gained by considering monthly average profiles for

CLAES and for each model, shown in Figure 5 for the three latitude bands. Near the

equator, GEOS DAS best represents the CLAES data in both magnitude and profile

shape. However, for both northern and southern middle latitudes, GEOS DAS profiles

exceed observations. Furthermore, the profile shape is not consistent with observations.

Between 40°N and 50°N, the CCM2 and GISS profiles are nearly coincident with each

other and with CLAES profiles. Between 40°S and 50°S, CCM2 and GISS profiles

approximate the shape of the CLAES profiles, but the GISS profile is systematically

high and CCM2 is systematically low. Given good comparisons for at least one latitude

band for each of the meteorological fields, it is clear there is no simple conceptual

model of changes in the residual circulation or horizontal mixing that will resolve the

discrepancies. For example, stronger upwelling in the tropics would improve agreement

of CCM2 and GISS with CLAES profiles, but such a change is likely to impact the

good agreement at middle latitudes adversely. For all three models, the profile shapes

are similar for the three latitude bands, whereas for CLAES the tropical profile shape

is distinctly different from the midlatitude profile shape. This qualitative discussion

is quantified by the scores given in Table 2. CCM2 has the highest score overall. The

relatively low scores are a good reflection of the general overall agreement suggested by

Figure 4 but the important quantitative differences shown in Figure 5.
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Test 2(b) Lower Stratosphere

Strahan et al. [1998a]have developeda lower stratospheric climatology for N20

that is basedon 175 flights of the ATLAS instrument on the NASA ER-2 between

August 1988and September1997[Podolskeet al., 1993]. Figure 6 gives contour plots of

this climatology in northern fall and winter. The data shown here reflect many of the

same features found in the CLAES data (Figure 3) - N20 is largest in the tropics, and

decreases with increasing potential temperature. The data reveal seasonal dependence,

for example, lower mixing ratios of N20 are seen in middle latitudes during the winter

than in the fall.

For this application, mean profiles are calculated for three latitude ranges

(35°S-50°S, 10°S-10°N; 35°N-55°N) and each of the four seasons, excepting 35°S-50°S

during austral summer as there are no data for this time and location. These latitude

ranges are chosen to exclude the polar vortex. The vertical range of the observations is

360 - 530 K (about 150 - 50 hPa). The range 380 - 500K has the most observations, so

this comparison is limited to that range; observations are averaged in 20 K vertical bins.

Model mean profiles are calculated for the same seasons, latitude ranges, and

potential temperatures as the ER-2 climatology. Because these comparisons are

concerned with the transport above 380K, the results are scaled so that the model

mixing ratio is equal to the observed mixing ratio at 380K (the tropical tropopause),

the effective lower boundary for the stratosphere for this calculation. This eliminates

biases caused by model differences in tropospheric transport.

The fall (September-October-November) profiles from the models are compared

with the climatological profiles in Figure 7. In the tropics, the models values of N20

are generally within the range of observations. The decrease with altitude is well

represented. At northern middle latitudes, the model profiles agree well with observed

profiles in the lowest part of the stratosphere, but diverge with increased potential

temperature. At the highest potential temperature included in this comparison, the
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model meansare270,266,and 258ppbv for GEOSDAS, CCM2 and GISSrespectively.

All are significantly greater than the observed224 ppbv.

For eachseason,the N20 at eachof the six potential temperatures in the

climatological profile is comparedwith model N20. If the differencebetweenthe model

and the climatology is within the standard deviation of the model, the maximum score

of 1 is given. A scoreof 0.5 is given if the differenceis within the sum of the standard

deviations of the model and the observations.No points aregivenfor greaterdifferences.

The total scoreis scaledby the maximum possiblescore,sothat the final value of this

test is 1. For this test, CCM2 receivesa scoreof 0.68,GEOS DAS receivesa scoreof

0.63, and GISSreceivesa scoreof 0.43. As for Test 2a, although model N20 fields

exhibit many characeristicsof the ER-2 climatology, the differencesare important. The

modelsuniformly fail to reproducethe seasonalchangesin N20 between440 and 500

K. Furthermore, the modeledN20 is alwayshigher than observationsfor this potential

temperature range at middle latitudes. The discrepanciessuggestthat there is not

enoughdescentat middle latitudes relative to the horizontal mixing betweenthe tropics

and middle latitudes, and that the seasonalchangesin the balancebetweenthe residual

mean circulation and the horizontal mixing are poorly represented.N20 and total

reactive nitrogen NOy exhibit a tight, linear anti-correlation in both observationsand

in most models(not evaluatedhere). Therefore,weanticipate that the systematichigh

bias in N20 will be accompaniedby a systematiclow biasin NOy.

Test 3 Tropical Midlatitude Distinctness of

Although the difference between the mean of all N20 observations on a pressure

level in the latitude band 40°N to 50°N and and that in the band 5°S to 5°N (section

2a) provides a gross measure of the balance between transport by the mean winds and

horizontal mixing, it provides little information about the sharpness and location of this

tracer gradient. The meteorological processes responsible for mixing in and near the
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subtropicsexhibit spatial and temporal variability, suggestedby the differencesbetween

the Fall and Winter distributions shownin Figure 3a and 3b (for example,note the

changein the latitude of the maximum vertical gradient near 10hPa). The sharpness

of the horizontal gradient, as seenin Figure 3(b) in the northern winter hemisphere,

is produced by the combinedinfluenceof the residual circulation and the horizontal

mixing driven by planetary wave transport. It contrasts with the more constant

horizontal gradient seenin the northern fall hemisphere(Figure 3(a)). Transport from

the extratropics to the tropics hasbeenthe subject of recentanalysesof satellite and

aircraft observations(seereferencesunder Test 4). Somewhatlessattention hasbeen

paid to transport in the oppositedirection, i.e., tropics to extratropics [Waugh et al.,

1996; Boering et al., 1994]. There is outflow from the tropics at all levels associated

with upward transport, and the tracer distribution at middle latitudes depends upon a

balance between the mean horizontal and vertical transport as well as mixing across the

subtropics.

One aspect of the large scale structure in an observed or modeled N20 field can

be characterized by considering the shape of a probability distribution function (PDF),

that is, a histogram of the tracer field. The observations are weighted to account for

non-uniform spatial sampling, and histograms for the model fields are computed by

binning after interpolating the model values on a pressure surface to an equal area

grid [Sparling et al., 1998]. PDFs were made for CLAES N20 observations, using all

measurements between 10°S and 45°N at 3 UARS standard levels (31.6, 14.7 and 6.8

hPa) for summer (June, July, August 1992), fall (September, October, November 1992)

and winter (January, February 1993). PDFs were made for each of the models, using the

same latitude domain and the model pressure level closest to the UARS level. GEOS

DAS pressures are the same as UARS pressures, GISS pressures are 23.7, 23.3 and 7.5

hPa, and CCM2 pressures are 31, 15.9, and 7.8 hPa. The northern spring distribution

is strongly influenced by the breakup of the polar vortex which varies greatly from year
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to year, and is omitted from this analysis. Also excluded is the fall 1992 distribution at

31.6 hPa, as the CLAES observations are uncertain due to the Mt. Pinatubo aerosols.

A total of eight distributions are compared. Results for 14.7 hPa are shown in Figure 8.

The CLAES distributions are bimodal, i.e., there are distinct tropical and midlatitude

peaks in the mixing ratio distribution for each of the 3 seasons shown at 14.7 hPa, and

for each season considered at the other two pressure levels as well. For each case, the

model is given a score of 1 if the distribution reveals two distinct air masses (i.e., if the

distribution is bimodal) and 0 otherwise. However, as Figure 8 shows, in the models

the midlatitude mixing ratios often appear as a tail appended to the tropical peak,

rather than the separate peaks seen by CLAES. Note that this test is based only on the

structure of the distribution; the relative heights of the peaks, the magnitude of their

separation, their seasonal behavior, and the altitude dependence of the distributions are

graded in Test 2.

The combined score is normalized to a maximum of 1. The CCM2 N20 distributions

shows two peaks for all 8 cases, giving CCM2 a score of 1. GISS shows two peaks in

5 cases and receives a score of 0.62, and GEOS DAS shows distinct air masses in only

three cases, receiving a score of 0.38.

Test 4 Propagation of annual cycle

One focus of model evaluation is transport in the lower tropical stratosphere.

The rates of tropical entrainment of extratropical air and upwelling within the tropics

determine the rate at which midlatitude lower stratosphere HSCT effluent can reach

the ozone layer. The vertical propagation of an annual cycle in tracer mixing ratio,
i .

forced by variations at the tropopause, stringently tests model transport in this region.

Examples of such tracers are CO2 [Boering et al., 1994; 1996] and/:/=H_O+2CH4 [Mote

et al, 1996; 1998; Randel et al, 1998]. The phase speed is not necessarily the same as

the mean upwelling rate in the tropics [Hall and Waugh, 1997a; Mote et al, 1996], but
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in this case the two speeds are approximately the same. The attenuation of the signal

amplitude is related to tropical entrainment of extratropical air and vertically diffusive

processes within the tropics [Avallone and Prather, 1996; Minschwaner et al., 1996; Volk

et al., 1996; Hall and Waugh, 1997b; Mote et al, 1998]. Here, properties of the modeled

cycles are compared with estimates from in situ CO2 and/_ observations taken during

the Observations of the Middle Stratosphere (OMS) balloon campaign, [Boering et al.,

"Timescales for stratospheric transport inferred from in situ observations of CO2 from

aircraft and balloons," manuscript in preparation, 1998], and HALOE H, as analyzed

by Mote et al. [1998] and Randel et al. [1998]. Data used here were provided by P. Mote

and K. Boering. A similar comparison, employing a large number of models in addition

to GMI, is made by Hall et al. [1998].

Figure 9 shows tropical profiles for the GMI models of (a) the cycle amplitude

profiles (natural log scale) and (b) the phase lag time. (These profiles were derived from

the models' simulation of the age spectrum, as discussed by Hall et al [1998].) Also

plotted are the estimates from HALOE /:/ data (square symbols) and from in situ CO_.

and/_ data (triangle symbols). There is good agreement between in situ and satellite

inferences of phase, and both show that the models propagate the annual cycle signal

too rapidly, i.e., the modeled phase lags increase too slowly with height.

For the amplitude, the in situ inferences at the two highest altitudes are

considereably less than the corresponding HALOE values. On the one hand, HALOE

is known to underestimate the annual cycle in H_O at the tropopause [e.g., Mote et al,

1996] implying a possible overestimate of the fractional amplitude aloft. On the other

hand, these top two in situ values are derived from the fewest number of balloon flights

and may not be representative. In any case, the GMI model amplitudes bracket the

observations. However, when proper account is taken for bias due to too rapid phase

propagation (see below), all the models are seen to overattenuate the annual cycle.

Figure 9 shows that to a first approximation, models and measurements display
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simple exponential decay of amplitude (a straight line fit to the log amplitude) and

uniform phase speed (a straight line fit to the phase lag). Thus, the cycle propagation

grade has 2 components, measured by single numbers: first, the average phase speed

c from 16 km to 24 kin; and second, the amplitude attenuation factor R. R is defined

as Ha/)_, where Ha is the scale height of the exponential amplitude fit, and I is the

wavelength of the cycle (the phase speed times one year). R isolates the effectiveness

of processes that attenuate the cycle better than Ha. As a measure of attenuation per

wavelength, R summarizes the attenuation that occurs in each model over the same

amount of time, 1 year. On a per wavelength basis, all the GMI models over-attenuate

the annual cycle.

Each model grade has three possible values: 1 if the model value falls within the

uncertainty range from observations; 0.5 if the value is within 50% of either the upper or

lower bound of the observational range; and 0 if the value is 50% greater than the upper

bound or 50% less than the lower bound. Table 3 summarizes the model performance,

the individual grades for phase and amplitude, and a mean of the 2 grades.

Test 5 Separation of the Upper Troposphere and Lower Stratosphere

This test concerns transport in the lowermost stratosphere, and the possibility of

substantial vertical mixing between the lowermost stratosphere and upper troposphere.

Nakazawa et al. [1991], using a 2 year data set collected from commercial aircraft, report

a CO2 seasonal cycle in the upper troposphere (UT) near 60°N with a May maximum.

At about the same latitude in the lower stratosphere (LS), 10-12 km, the observed

amplitude of the CO2 annual cycle was smaller, with a September maximum. These

observations indicate a strong barrier to upward motion at the high latitude tropopause,

which is the basis for this test. The model tropopause is identified using model

temperature fields. The tropopause is determined by the temperature minimum and/or

a decrease in lapse rate to less than 2K/km. For GEOS DAS and CCM2, which both
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have vertical resolution of about 1 km near the tropopause, the two model levels nearest

the tropopause (identified using the above criteria) are considered the tropopause levels.

For GISS, which has vertical resolution of about 3 km near the model tropopause,

only one level is used. The model level just above the tropopause is considered 'purely

stratospheric' while the level just below is considered 'purely tropospheric'. The zonal

mean of the CO2 time series for each model at 60°N is evaluated. The observations show

a 4 month difference between the maximum observed in the UT and that observed in the

LS. A model is given a score of 1 if this difference is at least two months. While a model

lag of 2 months is obviously significantly different from the observed lag, such a time

interval is long enough to show that the seasonal cycle in the model lower stratosphere

arrived via the tropical tropopause and not by vertical transport directly from the

middle latitude troposphere because the tropical to midlatitude lower stratospheric lag

is less than 2 months [Boering et al., 1994]. Thus satisfying this criteria is sufficient to

claim that the pathway for model transport is realistic. All three models score 1 on

this test when no convective transport is implemented. However, convective transport

as implemented with the GEOS DAS winds and the CCM2 winds causes both models

to fail this test, while the GISS winds including convection pass this test [Hall and

Prather, 1993]. In the GISS GCM convection is used to drive the general circulation

which provides self-consistency between the convection and the mean circulation. Unlike

the HSCT assessment, the SASS evaluation will require a realistic representation of

convection, and this test will provide a strong constraint to the models.

Test 6 Horizontal propagation of the CO2 signal

This analysis examines horizontal transport in the lower stratosphere but above

the level of the tropical tropopause along quasi-potential temperature mixing surfaces.

There are two aspects to this test. The first considers the amplitude of the annual cycle

in CO_, and the second considers the phase. As discussed by Boering et al. [1996] and
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Strahan et al. [1998b], the extratropical CO2 seasonal cycle between 380-440 K appears

to be transported there from the tropics. Above 440 K, no clear CO2 seasonal cycle

is observed in the northern hemisphere midlatitudes. To identify the cycle originating

in the CO2 at the tropical tropopause unambiguously, it is necessary to eliminate the

component of the cycle due to the residual circulation (i.e., temperature changes in the

lower stratosphere that cause seasonal variations in the relationship between CO2 and

potential temperature). This is accomplished by evaluating the CO2 seasonal cycle on

N20 surfaces rather than potential temperature surfaces. Here, the tropics are defined

as 10°S to 10°N and the northern midlatitudes as 35°N to 55°N.

The amplitude test has two components. First, the model midlatitude seasonal

cycle amplitude at 460 K must be less than 20% of the tropical seasonal cycle amplitude

just above the tropopause (380 K). Second, the model seasonal cycle at 420 K in the

midlatitudes must be at least 20% of the tropical seasonal cycle at 380 K. The models

receive a score of 0.5 for each criterion which is satisfied. The GEOS DAS winds

receive a score of 0.5; the CCM2 winds receive a score of 1. The GISS winds do not

have sufficient native vertical resolution to make a meaningful application of this CO2

amplitude test or the CO2 phase test discussed in the following paragraph, when run in

the GMI CTM using the Lin and Rood [1996] numerical transport scheme. Applications

using a transport scheme which conserves second order moments resolves such vertical

structures [Prather, 1986].

The CO2 phase test, which is focussed on the lower stratosphere at potential

temperature greater than or equal to that at the tropical tropopause, considers the

phase of the CO2 seasonal cycle in the midlatitudes relative to its phase in the tropics.

Boering et al. [1996] and Strahan et al. [1998b] find that the observed midlatitude

seasonal maximum between approximately 380K and 460 K appears about 2 weeks after

it appears in the tropics. This demonstrates that the primary pathway for transport

from the midlatitude troposphere to the midlatitude lower stratosphere is through the
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tropics, rather than directly through the midlatitude tropopause. A model with a

midlatitude seasonal maximum that arrives before the tropical COs maximum implies an

unrealistic pathway of transport in the model. For example, if the cycle maximum in the

midlatitude LS arrived a few weeks after the maximum in the underlying troposphere,

but before the arrival of the maximum in the tropics at the same height, this would

imply unrealistic model transport directly up through the midlatitude tropopause. This

test again uses N20 as the vertical coordinate for CO2. The N_O bins (i.e., altitude

ranges) are chosen to create 3 ranges between 380-460 K in the tropics. Three points

are possible, one for each N20 (altitude) ranges examined. The maximum score of 1

requires that the midlatitude seasonal maximum arrives 0.5-2 months after the tropical

seasonal maximum. The score is 0.5 if the maxima appear within the half month

temporal resolution of the analysis, and 0 if the midlatitude maximum precedes the

tropical maximum. Both CCM2 and GEOS DAS receive a score of 1 on this part of

the test, which indicates that horizontal transport is the dominant transport pathway.

The GMI GISS results could not be diagnosed for this test. Results for both the COs

amplitude and phase tests are summarized in Table 4.

5. Discussion and Conclusions

The overall scores for the three models are given in Table 5. The CCM2

meteorological fields consistently outscored the GEOS DAS and GISS fields, and were

selected for the GMI assessment of the stratospheric HSCTs. Clearly the process

of grading and selection has just begun, and further comparisons will be part of

a continuing model evaluation. For example, Rodriguez et al. [1999] extend these

tracer tests to the full chemistry integrations. They compare the acuracy of these

meteorological fields using the same chemical model with observed climatologies of

column ozone and ozone profiles, with HALOE observations of NO and NO2, and with

an NOy climatology for the lower stratosphere based on ER-2 data.
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Although CCM2 is currently the best choice based on these tests, the tests also

identify specific limitations to an assessment using CCM2 (as well as the GEOS DAS

and GISS) meteorological fields. For example, because northern hemisphere winter

temperatures are warmer than observed, the simulations with CCM2 fields will not

predict polar statospheric clouds, nor will they simulate any increase in PSC occurrence

due to the build up of H20 and HNQ from the HSCTs.

A more important discrepancy identified here is the overestimate of N20 in the

lower stratosphere by all three models. Given the ready ability of most CTMs to

match the observed N20-NOy relationship in the lower stratosphere, it suggests that

the models will significantly underestimate absolute abundance of NOy near 20 km,

the peak expected HSCT perturbation to NOy. The modeled ozone response to this

increase in NOy is itself dependent on the base level of NOy; the ozone change per ppb

increase in NOy is less negative for lower background levels of NOy [Wennberg et al.,

1994] as expected for these meteorological fields.

Nevertheless, the identification of these drawbacks and assignment of grades points

out the benefit of this approach in evaluating and selecting models for an assessment.

A model which scores as well as GEOS DAS on Test 1 would be expected to provide a

more realistic representation of PSC occurrence and perturbation by HSCTs given an

appropriate model for PSC formation and evaporation, [e.g., Considine et al., 1999].

However, it is misleading with such a single test to assume that some of the more

complex interactions of chemistry and transport in the polar stratosphere (e.g., the

isolation of the PSC-processed polar vortex) would then be accurately simulated by the

model. Similarly, a model with a higher score on Test 2 is likely to have a reasonable

NOy background in the lower stratosphere, but this does not necessarily mean that

the buildup of HSCT NOy would be more accurate. Provided we pick a set of grading

criteria that give a balanced test of model performance in simulating atmospheric

observations, the model with the highest score can be defended as the best choice for
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the current assessment.

Lastly, the establishment of formal criteria providesan objective baselinefor

evaluating new or improved versionsof thesemeteorologicalfields in terms of their

simulation of chemicaltracers. As the generalcirculation modelsor data assimilation

systemsare developedand provide more realistic representationsof stratospheric

meteorology,thesegradesare likely to improve. However,neither GCM's nor data

assimilation systems can simply be tuned to provide a bettter fit to these observations,

thereby improving their grades. Simultaneous improvement in model performance on all

these tests is not obvious (or likely). For example, developing a better parameterization

for gravity-wave drag will affect both the residual circulation and temperatures, and

while the mean winds and temperature may better match observations, the aspects of

tracer transport as tested here may not improve. A better representation of stratospheric

meteorology, necessary to develop a credible assessment model for HSCTs, cannot be

achieved by fitting transport parameters to a set of mean measurements. It is vital

to establish grading criteria such as used in this exercise that represent the range of

atmospheric phenomena controlling atmospheric chemistry.
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Figure 1. This schematic shows the principle features of stratospheric transport; the numerals

indicate aspects of transport which are the primary focus of a particular test. Test 1: the

temperature distribution near the flight corridors; Tests 2(a) and 2(b): the residual circulation

and horizontal'mixing; Test 3: separation of the tropics and middle latitudes; Test 4: large

scale ascent and horizontal mixing into the tropics; Test 5: separation of the troposphere from

the lowermost stratosphere; Test 6: horizontal mixing from the tropics to the middle latitudes.

The tests are described in detail in the text.

Figure 2. The annual cycles of the monthly mean and standard deviation of NCEP temper-

atures for the two latitude bands are compared with the annual cycle and standard deviation

for temperatures from CCM2, GEOS DAS, and GISS

Figure 3. (a) CLAES N20 averaged in 10 degree latitude bins from Sept. 18 to Sept. 24,

1992; (b) same as (a) but for Jan. 6 to Jan. 13, 1993.

Figure 4. The September and January zonal mean distributions calculated using winds from

GISS (a and b); for CCM2 (c and d); for GEOS DAS (e and f).

Figure 5. Mean N20 profiles for each CLAES and for each model for each month are shown

for (a) 40-50S; (b) 5S-5N; (c) 40-50N.

Figure 6. Contour plots of and N20 climatology in fall and winter derived from ATLAS

measurements from the ER-2 during fall (a) and winter (b).

Figure 7. The fall (September-October-November) profiles from the models are compared

with the climatological profiles. Each row corresponds to a different model (top: GEOS DAS;

middle: CCM2; Bottom: GISS) and each column to a different latitude range (left: SH Middle;

middle: Tropics; right: NH Middle).

Figure 8. Seasonal equal-area histograms of CLAES v.7 N20 at vertical level 14.7 mb for

summer (JJA 1992), fall (SON 1992) and winter (JF 1993). The shaded histograms are the

model results, at vertical levels closest to the observations as indicated on the figure. Each row

corresponds to a different model (top: GISS; middle: GEOS DAS; bottom: CCM2), and each

column to a different season (left: summer; middle: fall; right: winter).
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Figure 9. Verticalprofilesin the tropics: (a), natural logrithm of the amplitudeof theannual

cyclein tracer mixing ratio propagatingupwardfrom the tropical tropopause;and (b), the

phaselag time of the cycle. The amplitudeis normalizedto unity and the phaselag defined

aszeroat 16km. Modelprofilesare (solidline) GISS2', (shortdash)CCM2,and (longdash)

GEOSDAS.The symbolsrepresentinferencesfrom observations:(square)deductionsfrom 5

yearsof HALOE-observedH20+2CH4dataof Mote et al, [1998] (courtesy Philip Mote); (up

triangles) in situ CO2 measurements from 6 aircraft and 2 balloon deployments from 1994 to

1997; and (down triangles) in situ H20÷2CHa from the same two 1997 balloon deployments

(Boering et al., Timescale for stratospheric transport inferred from in situ observations of CO2

from aircraft and balloons, manuscript in preparation, 1998; in situ data provided courtesy

Kristie Boering).



I--

0

C

"0
0

0
0 0

o edq o o a._
0

0

L_



230

228

226

224

_222

22O

218

216

8

6

A

c_ 4
I-
u_

2

T (K) 50 hPa 40N-50N
I I I I I I I I I I I I

/ ° °%

/ ° . • o. "%

oj" ..°., • • • ° • I'" _ • ,_b_l.

o...:, "-

." _ _%° ,

- - - GMI GEOS DAS

..... GMI GISS
I I 1 I I I I I I I I I

J FMAMJ JASOND
Month

STD (K) 50 hPa 40N-50N

' ' ' ' 'NCiP'_ ....
.........GMI CCM2

" - - - GMI GEOS DAS

_,'_ ..... GMI GISS
#

z¥, /
..... . _. /.".... /,,;

"L " :.':-.... .._

I I I 1 f I I I I I f I

J FMAMJ JASOHD
Month

235

230

225

--, 220
I--

215

210

205

14

12

10

"-" 8

I-
¢n 6

4

2

0

T (K) 50 hPa 60N-70N
I I I I I I I I I I I I

s'.':'.:,,
.,,:.." ..'.,,

.,,"_ ":._
.-,, .:,

-, "k

" _ NCEP
......... GMI CCM2

- - - GMI GEOS DAS
..... GMI GISS

I I I I I I I I I I I I

J FMAMJ JASOND
Month

STD (K) 50 hPa 60N-70N

'''' -- ' NCi_P'....
......... GM! CCM2

" "_ - - - GMI GEOS DAS

....  M, ,ss
,,,.\. /
'...\ ,.-i_"",

I I I I I I I I I I I l

J FMAMJ JASOND
Month



c)
El_
c-

(b

09
o3
¢)
m

EL

CLAES SEPT 18-24 92

10

-5O 0

Ls_titude
50

10

1 O0

CLAES JAN 6- 15 95
• . , r • • i i , • ,

i , , t , . i . . . , I , i t

-50 0 50

Latitude

,:310

z

2O



uop O;_N ova

O9

OL

l-das O;_N OVO

09

i i i i

uop O;_N SS19

apn].!1.o-I

09 0£ 0 0£-09-06- 06

I I I I I

1des OSN SSI9

OOL

OL

09

uop

e pn:l.!1.o-I

0£ 0 0£- 09- 06-

O_N _IAIOO

q OOL

09
apn_!lo-1

0£ 0 0£- 09- 06-

.... 000L

i

O_N _IAIOO

OL

"U

C

@

-O
Q

'-i
@

c

cl



E_
n
c-

_10
13_

40-50 S
1

(o)

_ _GEOS DAS

_ _CCM2

100 __oJss
I

0 150

N20 (ppbv)

300

C_
[1_
__c

"_10
I:1._

5S-5N
I

(b)

_,__.-"t_

__ CLAES "_"_

I] _GEOS DAS ]
_CCM2

1 O0 clss ,

0 150 300

N20 (ppbv)

n
t-

"J10
n

100

0

40- 50 N

(c)

; _,\%

L_ q"" v',b%

__CLAE

_GEOS DAS

_ _CCM2

_ _G!SS
t

150

N20 (ppbv)

300



!,,,,_

0
'I,,,_

o..

E
0

I-.-

0

Iz

0
n

5O0 -

450

4O0

SON ER-2 N20 DJF

0

0

Q_

E
0

(D
4_

c
0

0
13._

500

450

40O

-_50 0 50 -,,5_0

60 90 120 150 180 210 240 260 280 290 500 5t0

N20 (ppb)

ER-2

0

N20

,50

_._.._ L_.__ ,_¢_.,



DAO SH Midlots
500 +_

+ ÷%';+ _\_
480 "_":_.-_-+ \ \

+ +

460 + ""+_+++ , \,
o + :;_r_+. _\_

440 +_+ ' _"

420 + "_E,. + ._.

400_ + "'+'_,_"

150 200 250 300
N=O (ppb)

NCAR SH M[dlots

.........500 + _-_\

+:_ ÷.\ \\480

++ \

÷ \

==440 \
=" + -7_: ,+ \_- -_. \'+\

•=o ++:%;.+_t+ +

400 _ +%

380- t , , , , +,_

150 200 250 300
N=O (ppb)

UCI SH Midlots

500 + +'_:_++_.. _,\\\'\ '
480 + "':_.-[_+ \ \ \

+ +

460 ""+'(+_+++ ' / /

o +_'+ ++_ \\_t÷ _: \
==440 ÷_._
I- + +

,oo
380 +_E+

15( 200 250 300
N,O (ppb)

500

480

460

o

440

420

400

380

27_

5O0

480

460

440

420

400

580

5O0

480

460

o
== 440
1-

420

400

38O

27(

DAO Tropics

............./.......... i ......................

, _-_..,÷._, _
"%,, 1

..................................... •+,._.+..... ,-t
280 290 300 310 320

N,O(ppb)

NCAR Tropics
................... :,._,......................... .

_.

I ÷ :

..................................... .+,_+..... ,-t
270 280 290 300 .310 320

._o (ppb)

UCI Tropics

X %

280 290 300 320
N=O (ppb)

.,+

310

DAO NH Midlots
.... +, '_ . . , .+++,\,

480 +. +_ ++_

460 ++ ;_.__\_

++ _IEA -P
420 _. ;_'_._+

_._ ++

150 200 250 300
NzO (ppb)

500 NCAR NH Midlots

480 ' ++:)Y_:_ ++:\_ '_
+ \

.o +

580

150 200 250 ,500
NzO (ppb)

UCI NH M_dlots

500 '+ ';_' _' \\ " • . '
+ ._E + \\ _

+ . _'.,. + , \ \

480 + +_. -_+\\\
460 +

o +

440 " \

420

400 ÷÷:!+_
+÷_

380 .... , , , +

150 200 250 300
NzO (ppb)



0.14

0.10
LL

0.06

0.02

0.14

0.10
In
tm
n 0.06

0.02

0.1l

0.10
1.1_
C)
n 0.06

0.02

0

summer

' t , .... i ...... , .... p ....

t

50 50

fall
w

100 150 200 2500

[N20] (ppbv)

L_
100 150 200 250 0

[N20] (ppbv)

winter

h CLAES 14.7 hPa

t GISS 13.3 hPa

CLAES 14.7 hPa

a GEOS DAS 14.7 hPa

CLAES 14.7 hPa

CCM2 15.9 hPa

50 100 150 200 250

[N20] (ppbv)



26

24

22

20,

18

16
_¢

26

24 _

22

20,

18

16

_%, I l

_, I l

",, []

.... . ,
....... GMI-DAO _"', []

[] HALOE (Mote) "_",xk-.. x t
• " \'. - _ r

HALOE (Randel) _'" _ |

• in situ CO2 . ._..aa ,, L

• in situ H20 - x'_.?, /

-3 -2 -1 0

ln(A(z))

I I I I I l I . I | l I I

,," []

i I ,''_ []

// ,"

/ ,," _ []

' ""'"'/m [] [] •

/ " [] •

/ ," []

/ ,"

// .,"

/ .H [] •
i o"

, _,/ [] •

s Z"/'"'"" --i1/ [] •

// "'" [] _

.0 0.5 1.0

phase lag (years)


